Java 23种设计模式详细教程
设计模式是软件设计中常见问题的典型解决方案,它们代表了最佳实践,是众多软件开发人员经过长期试验和错误总结出来的。Java设计模式通常分为三大类:创建型模式、结构型模式和行为型模式。
一、创建型模式(5种)
1. 单例模式 (Singleton)
目的:确保一个类只有一个实例,并提供全局访问点。
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
变体:
- 饿汉式:类加载时就初始化
- 懒汉式:第一次使用时初始化
- 双重检查锁:线程安全
- 静态内部类:延迟加载且线程安全
- 枚举实现:防止反射攻击
2. 工厂方法模式 (Factory Method)
目的:定义一个创建对象的接口,但让子类决定实例化哪个类。
interface Product {
void use();
}
class ConcreteProduct implements Product {
public void use() {
System.out.println("Using ConcreteProduct");
}
}
abstract class Creator {
public abstract Product factoryMethod();
}
class ConcreteCreator extends Creator {
public Product factoryMethod() {
return new ConcreteProduct();
}
}
3. 抽象工厂模式 (Abstract Factory)
目的:提供一个接口,用于创建相关或依赖对象的家族,而不需要明确指定具体类。
interface AbstractFactory {
ProductA createProductA();
ProductB createProductB();
}
class ConcreteFactory1 implements AbstractFactory {
public ProductA createProductA() { return new ProductA1(); }
public ProductB createProductB() { return new ProductB1(); }
}
4. 建造者模式 (Builder)
目的:将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建不同的表示。
class Product {
private String part1;
private String part2;
// setters and getters
}
interface Builder {
void buildPart1(String part1);
void buildPart2(String part2);
Product getResult();
}
class ConcreteBuilder implements Builder {
private Product product = new Product();
public void buildPart1(String part1) {
product.setPart1(part1);
}
public void buildPart2(String part2) {
product.setPart2(part2);
}
public Product getResult() {
return product;
}
}
class Director {
public Product construct(Builder builder) {
builder.buildPart1("part1");
builder.buildPart2("part2");
return builder.getResult();
}
}
5. 原型模式 (Prototype)
目的:通过复制现有的实例来创建新的实例。
interface Prototype extends Cloneable {
Prototype clone() throws CloneNotSupportedException;
}
class ConcretePrototype implements Prototype {
public Prototype clone() throws CloneNotSupportedException {
return (Prototype)super.clone();
}
}
二、结构型模式(7种)
6. 适配器模式 (Adapter)
目的:将一个类的接口转换成客户希望的另一个接口。
interface Target {
void request();
}
class Adaptee {
public void specificRequest() {
System.out.println("Specific request");
}
}
class Adapter implements Target {
private Adaptee adaptee;
public Adapter(Adaptee adaptee) {
this.adaptee = adaptee;
}
public void request() {
adaptee.specificRequest();
}
}
7. 桥接模式 (Bridge)
目的:将抽象部分与实现部分分离,使它们都可以独立变化。
interface Implementor {
void operationImpl();
}
class ConcreteImplementorA implements Implementor {
public void operationImpl() {
System.out.println("ConcreteImplementorA");
}
}
abstract class Abstraction {
protected Implementor implementor;
public Abstraction(Implementor implementor) {
this.implementor = implementor;
}
public abstract void operation();
}
class RefinedAbstraction extends Abstraction {
public RefinedAbstraction(Implementor implementor) {
super(implementor);
}
public void operation() {
implementor.operationImpl();
}
}
8. 组合模式 (Composite)
目的:将对象组合成树形结构以表示"部分-整体"的层次结构。
interface Component {
void operation();
}
class Leaf implements Component {
public void operation() {
System.out.println("Leaf operation");
}
}
class Composite implements Component {
private List<Component> children = new ArrayList<>();
public void add(Component component) {
children.add(component);
}
public void remove(Component component) {
children.remove(component);
}
public void operation() {
for (Component component : children) {
component.operation();
}
}
}
9. 装饰器模式 (Decorator)
目的:动态地给一个对象添加一些额外的职责。
interface Component {
void operation();
}
class ConcreteComponent implements Component {
public void operation() {
System.out.println("ConcreteComponent operation");
}
}
abstract class Decorator implements Component {
protected Component component;
public Decorator(Component component) {
this.component = component;
}
public void operation() {
component.operation();
}
}
class ConcreteDecoratorA extends Decorator {
public ConcreteDecoratorA(Component component) {
super(component);
}
public void operation() {
super.operation();
addedBehavior();
}
private void addedBehavior() {
System.out.println("Added behavior from ConcreteDecoratorA");
}
}
10. 外观模式 (Facade)
目的:为子系统中的一组接口提供一个一致的界面。
class SubsystemA {
public void operationA() {
System.out.println("SubsystemA operation");
}
}
class SubsystemB {
public void operationB() {
System.out.println("SubsystemB operation");
}
}
class Facade {
private SubsystemA subsystemA = new SubsystemA();
private SubsystemB subsystemB = new SubsystemB();
public void operation() {
subsystemA.operationA();
subsystemB.operationB();
}
}
11. 享元模式 (Flyweight)
目的:运用共享技术有效地支持大量细粒度的对象。
class Flyweight {
private String intrinsicState;
public Flyweight(String intrinsicState) {
this.intrinsicState = intrinsicState;
}
public void operation(String extrinsicState) {
System.out.println("Intrinsic: " + intrinsicState + ", Extrinsic: " + extrinsicState);
}
}
class FlyweightFactory {
private Map<String, Flyweight> flyweights = new HashMap<>();
public Flyweight getFlyweight(String key) {
if (!flyweights.containsKey(key)) {
flyweights.put(key, new Flyweight(key));
}
return flyweights.get(key);
}
}
12. 代理模式 (Proxy)
目的:为其他对象提供一种代理以控制对这个对象的访问。
interface Subject {
void request();
}
class RealSubject implements Subject {
public void request() {
System.out.println("RealSubject request");
}
}
class Proxy implements Subject {
private RealSubject realSubject;
public void request() {
if (realSubject == null) {
realSubject = new RealSubject();
}
preRequest();
realSubject.request();
postRequest();
}
private void preRequest() {
System.out.println("Pre request");
}
private void postRequest() {
System.out.println("Post request");
}
}
三、行为型模式(11种)
13. 责任链模式 (Chain of Responsibility)
目的:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。
abstract class Handler {
protected Handler successor;
public void setSuccessor(Handler successor) {
this.successor = successor;
}
public abstract void handleRequest(Request request);
}
class ConcreteHandlerA extends Handler {
public void handleRequest(Request request) {
if (canHandle(request)) {
// 处理请求
} else if (successor != null) {
successor.handleRequest(request);
}
}
private boolean canHandle(Request request) {
// 判断是否能处理
return true;
}
}
14. 命令模式 (Command)
目的:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化。
interface Command {
void execute();
}
class ConcreteCommand implements Command {
private Receiver receiver;
public ConcreteCommand(Receiver receiver) {
this.receiver = receiver;
}
public void execute() {
receiver.action();
}
}
class Receiver {
public void action() {
System.out.println("Receiver action");
}
}
class Invoker {
private Command command;
public void setCommand(Command command) {
this.command = command;
}
public void executeCommand() {
command.execute();
}
}
15. 解释器模式 (Interpreter)
目的:给定一个语言,定义它的文法的一种表示,并定义一个解释器。
interface Expression {
boolean interpret(String context);
}
class TerminalExpression implements Expression {
private String data;
public TerminalExpression(String data) {
this.data = data;
}
public boolean interpret(String context) {
return context.contains(data);
}
}
class OrExpression implements Expression {
private Expression expr1;
private Expression expr2;
public OrExpression(Expression expr1, Expression expr2) {
this.expr1 = expr1;
this.expr2 = expr2;
}
public boolean interpret(String context) {
return expr1.interpret(context) || expr2.interpret(context);
}
}
16. 迭代器模式 (Iterator)
目的:提供一种方法顺序访问一个聚合对象中的各个元素,而又不暴露其内部的表示。
interface Iterator<T> {
boolean hasNext();
T next();
}
interface Aggregate<T> {
Iterator<T> createIterator();
}
class ConcreteAggregate<T> implements Aggregate<T> {
private List<T> items = new ArrayList<>();
public Iterator<T> createIterator() {
return new ConcreteIterator<T>(this);
}
public int size() {
return items.size();
}
public T get(int index) {
return items.get(index);
}
}
class ConcreteIterator<T> implements Iterator<T> {
private ConcreteAggregate<T> aggregate;
private int index = 0;
public ConcreteIterator(ConcreteAggregate<T> aggregate) {
this.aggregate = aggregate;
}
public boolean hasNext() {
return index < aggregate.size();
}
public T next() {
return aggregate.get(index++);
}
}
17. 中介者模式 (Mediator)
目的:用一个中介对象来封装一系列的对象交互。
interface Mediator {
void notify(Colleague sender, String event);
}
class ConcreteMediator implements Mediator {
private Colleague colleague1;
private Colleague colleague2;
public void setColleague1(Colleague colleague1) {
this.colleague1 = colleague1;
}
public void setColleague2(Colleague colleague2) {
this.colleague2 = colleague2;
}
public void notify(Colleague sender, String event) {
if (sender == colleague1) {
colleague2.receive(event);
} else {
colleague1.receive(event);
}
}
}
abstract class Colleague {
protected Mediator mediator;
public Colleague(Mediator mediator) {
this.mediator = mediator;
}
public abstract void send(String event);
public abstract void receive(String event);
}
class ConcreteColleague1 extends Colleague {
public ConcreteColleague1(Mediator mediator) {
super(mediator);
}
public void send(String event) {
mediator.notify(this, event);
}
public void receive(String event) {
System.out.println("Colleague1 received: " + event);
}
}
18. 备忘录模式 (Memento)
目的:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。
class Originator {
private String state;
public void setState(String state) {
this.state = state;
}
public String getState() {
return state;
}
public Memento saveStateToMemento() {
return new Memento(state);
}
public void getStateFromMemento(Memento memento) {
state = memento.getState();
}
}
class Memento {
private String state;
public Memento(String state) {
this.state = state;
}
public String getState() {
return state;
}
}
class CareTaker {
private List<Memento> mementoList = new ArrayList<>();
public void add(Memento state) {
mementoList.add(state);
}
public Memento get(int index) {
return mementoList.get(index);
}
}
19. 观察者模式 (Observer)
目的:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。
interface Subject {
void registerObserver(Observer o);
void removeObserver(Observer o);
void notifyObservers();
}
class ConcreteSubject implements Subject {
private List<Observer> observers = new ArrayList<>();
private int state;
public void setState(int state) {
this.state = state;
notifyObservers();
}
public void registerObserver(Observer o) {
observers.add(o);
}
public void removeObserver(Observer o) {
observers.remove(o);
}
public void notifyObservers() {
for (Observer observer : observers) {
observer.update(state);
}
}
}
interface Observer {
void update(int state);
}
class ConcreteObserver implements Observer {
public void update(int state) {
System.out.println("Observer notified. New state: " + state);
}
}
20. 状态模式 (State)
目的:允许一个对象在其内部状态改变时改变它的行为。
interface State {
void handle(Context context);
}
class ConcreteStateA implements State {
public void handle(Context context) {
System.out.println("Handling in State A");
context.setState(new ConcreteStateB());
}
}
class ConcreteStateB implements State {
public void handle(Context context) {
System.out.println("Handling in State B");
context.setState(new ConcreteStateA());
}
}
class Context {
private State state;
public Context(State state) {
this.state = state;
}
public void setState(State state) {
this.state = state;
}
public void request() {
state.handle(this);
}
}
21. 策略模式 (Strategy)
目的:定义一系列的算法,把它们一个个封装起来,并且使它们可相互替换。
interface Strategy {
int doOperation(int num1, int num2);
}
class OperationAdd implements Strategy {
public int doOperation(int num1, int num2) {
return num1 + num2;
}
}
class OperationSubtract implements Strategy {
public int doOperation(int num1, int num2) {
return num1 - num2;
}
}
class Context {
private Strategy strategy;
public Context(Strategy strategy) {
this.strategy = strategy;
}
public int executeStrategy(int num1, int num2) {
return strategy.doOperation(num1, num2);
}
}
22. 模板方法模式 (Template Method)
目的:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。
abstract class AbstractClass {
public final void templateMethod() {
primitiveOperation1();
primitiveOperation2();
concreteOperation();
}
protected abstract void primitiveOperation1();
protected abstract void primitiveOperation2();
private void concreteOperation() {
System.out.println("Common operation");
}
}
class ConcreteClass extends AbstractClass {
protected void primitiveOperation1() {
System.out.println("Concrete operation 1");
}
protected void primitiveOperation2() {
System.out.println("Concrete operation 2");
}
}
23. 访问者模式 (Visitor)
目的:表示一个作用于某对象结构中的各元素的操作。
interface Visitor {
void visit(ElementA element);
void visit(ElementB element);
}
class ConcreteVisitor implements Visitor {
public void visit(ElementA element) {
System.out.println("Visitor processing ElementA");
}
public void visit(ElementB element) {
System.out.println("Visitor processing ElementB");
}
}
interface Element {
void accept(Visitor visitor);
}
class ElementA implements Element {
public void accept(Visitor visitor) {
visitor.visit(this);
}
}
class ElementB implements Element {
public void accept(Visitor visitor) {
visitor.visit(this);
}
}
class ObjectStructure {
private List<Element> elements = new ArrayList<>();
public void add(Element element) {
elements.add(element);
}
public void accept(Visitor visitor) {
for (Element element : elements) {
element.accept(visitor);
}
}
}
四、设计模式的选择与应用
如何选择设计模式
- 理解问题:首先明确你要解决的问题是什么
- 模式目的:了解每个模式的意图和适用场景
- 权衡利弊:考虑模式的复杂性和带来的好处
- 重构现有代码:有时在重构时发现模式的应用点
设计模式的最佳实践
- 不要过度设计:只在必要时使用设计模式
- 组合使用:多个模式可以一起使用解决复杂问题
- 保持简单:优先选择简单的解决方案
- 理解原理:不要机械套用,理解背后的思想
常见设计模式组合
- MVC架构:组合使用观察者、策略和组合模式
- 复杂对象创建:工厂方法+建造者+原型
- 复杂行为管理:状态+策略+责任链
设计模式是提高代码质量、可维护性和可扩展性的强大工具,但需要在实际开发中不断实践才能真正掌握。